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Abstract—Minimisation methods for iraining feedforward nevworks with back propagation are compared. Feedforward
newral network training is a special case of function minimisation, where no explicit model of the data is assumed,
Therefore, and due to the high dimensionality of the data, lincarisation of the training problem through use of
orthogonal basis functions is not desivable. The focus is on function mirimisation on any basis. Quasi-Newton and
conjugate gradient methods are reviewed, and the laiter are shown to be a special case of error hack propagation
with momentum term. Three feedforward learning problems are tested with five methods. [t is shown that, due to
the fixed stepsize, standard error back propagation pecforms well in avoiding local minima. However, by wsing not
only the local gradient but also the second derivative of the ervor funcrion, a much shorter training time is reguired.
Conjugate gradient with Powell restarts shows to be the superior method.

Keywords—Feedforward neural network training, Numerical optimisation techniques, Neural function approxi-
mation, Error back propagation, Conjugate gradient, Quasi-Newton.

1. INTRODUCTION

Back propagation of error gradicnts has proven its use-
fulness in training feedforward and feedback neural
networks to tackle a large number of classification and
function mapping problems. In many cases, however,
the large number of learning iterations necded to op-
timally adjust the parameters of the networks is pro-
hibitive for online applications, such as adaptive process
control. But even for applications where real-time re-
sponse is not required, the slow convergence of crror
back propagation often results in training times cx-
ceeding hours of computer time,

MNumerical analysis has always focused on methods
using not only the local gradient of the function but
also the second derivatives. In the former case, the
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function is approximated by the first {constant) and
second { linear) terms of a Taylor expansion; in the sec-
ond case, the third { quadratic) term is also taken into
account. When the approximation of the function by
its second order Taylor expansion is precise, the global
minimum can be found in v iterations, where r is the
number of degrees of freedom of the system.

Error functions, however, such as those that are to
be minimised in feedforward network training, are not
precisely a parabola, but can generally be considered
to consist of a summation of parabola, especially close
1o minima.

Recently, there has been a focus of training feedfor-
ward neural networks with conjugate gradient methods
{ Battiti, 1992; Kinsella, 1992; Barnard, 1992; van der
Smagt & Krise, 1991). Their superiority in solving
nonlinear optimisation techniques requires more ex-
tensive use in back propagation learning, while a better
understanding of getting trapped in local minima, and
their behaviour not close to global minima, is imper-
ative,

2. APPROXIMATION OF AN
UNKNOWN FUNCTION

We consider a function F : 9" — " that is to be ap-
proximated. The function 7 is not analytically known,
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but rather samples 8" = {s', 5%, ..., 5"} with s* =
{x”, y") are generated by a process that is governed by
7, that is, 7(x") = y". From the available samples we
want 1o build a smooth approximation of .

To approximate F we regard a feedforward neural
network AW 07— WY NY consists of basis finctions
g ==, (1 = i=x)that are represented by hidden
units, and weighted connections between the input,
hidden, and output units. The ith output element of
N s

(X)) = X “'zu‘ﬂ,( = Wy X Wy rl) + Wi
j=1

k=1
l=i=n, (I}

with one layer of hidden units and linear output units,

Without loss of generality, we assume N to have a
fixed (i.e., predetermined ) topology. The approxima-
“tion N'¥ then only depends on the learning samples S,
and the learning algorithm that determines the parame
eters w from 5 and the architecture of A, In this paper,
an overview of methaods to heuristically determine op-
timal parameters w that use not only first but also see-
ond derivatives of F are reviewed.

When approximating F with A, we have 1o consider
three types of error: representation error, peneralisation
error, and optimisation error { VySniauskas, Groen, &
Krise, 1992).

Represemtation Evror. 1 et us first consider the case when
the full set of learning samples §™ is available'. Also,
assume that, given 8, we can find the optimal w™",
On a digital computer, this can theoretically be obtained
via a brute-force scarch through the whole ( finite but
very large ) parameter space. This will render & 9P, such
that

‘fl?ls]" N x) ]| efx =, (2)

is minimal and only depends on the architecture { ¢.q.,
number of hidden units) of W. Equation { 2) is called
the represemtation error (Hornik, Stinchcombe, &
White, 1989,

Generalisation Error. In real-world applications, only
a finite (i.e., small) number of learning samples is
available or can be used at the same time. Furthermore,
the samples contain noise, The values of # for which
no samples are available must be interpolated. Thus,
a generalisation error occurs, consisting of the errors
for those pairs (x, y) € 8. The generalisation error is
included in eqn (2):

" The limited representation accuracy of a digital computer makes
it unnecessary, indeed, that & has infinitely many samples.
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[ 1900 - ¥l dx <o, 4 . (3)

Optimisation Error. Because there is only a finite set
of learning samples available, evaluation of eqn (3) is
not feasible: the approximation is evaluated only at the
values x where there are available learning samples.
The approximated error that is used is

E= 2 ly=Nix) <e+ete. (4)

(xyIES
Equation (4) is the function that is minimised in the
learning process. The function |- ]| is generally inter-
preted as the Lo norm, thatis, |$], = VE, £, Insome
cases, the L norm (or max norm) is suggesied, es-
pecially as a criterion for stopping the minimisation
process; however, in the presence of noise (that is, in
the case of real noise, Poisson distributed ) the L., norm
is not meaningful.
This paper concentrates on the error £, obtained
during the minimisation process.

2.1. Nonlinear Optimisation Techniques

The problem of optimal representation is thus reduced
to first determining the structure (c.q., choice of basis
functions ¢, ¢, ..., &) of the network, and from
that finding an optimal set w, where optimality is in-
terpreted in terms of egn (4),

Obviously, these two processes are intertwined. Ifa
good set of basis functions can be found, the success
of which depends on the particular problem, then the
sccond step may become easier 1o perform,

fncremental Learning. Although error back propaga-
tion is best used on a batch of learning samples, when
those samples are generated one at a time while the
learning process is in progress it is desirable to update
the approximation with those new samples. Because
more than the local gradient is necessary, second-order
methods cannot directly be used with sample training,
The following modification may present a solution,
however, Instead of eqn (4) we measure the change in
the approximation of the newral network over the whole
input domain from weight vector w; to w,,, and try
to minimise it. This minimum entropy method is com-
bined in a weighted sum with the error caused by the
new learning sample (sec Figure 1.

Thus, the error function that has to be minimised
15

IINP"{NJ—NE’{!E}IML (5)

This minimum entropy method, suggested by Kadir-
kamanathan & Fallside ( 1990), works well when ac-
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_new leamning sample

X

FIGURE 1. Although the new leamning sample has to be ap-
proximated, the difference between the previous and the new
approximation (shaded area) is minimised.

tivation functions are used that only have a local influ-
ence on the approximation; otherwise, evaluating eqn
(5) is too costly.

3. CHOOSING THE BASIS FUNCTIONS

Choosing a good set of basis functions ¢, reduces the
burden of finding a good set of parameters w; . In par-
ticular, when the error function eqn (4) is linear in the
parameters w, the optimal solution can be analvtically
found?.

Such linear dependency can be obtained by intelli-
gently choosing your basis functions. An obvious choice
often is to use basis functions | x'}, but orthogonal
polynomials are preferred. Appendix A discusses the
advantage of orthogonal polynomials over nonorthog-
onal ones,

3.1, Orthogonal Basis Funections

Orthogonality of two functions ¢, (x) and ¢;(x) is de-
fined as

J: t,b,{x]qb){x}dx = {.6r',l ['ﬁ}

over some interval [x,, x:], where 8, is the Kronecker
delta, and ¢ is a constant. When ¢ = 1, the functions
are called orthonormal.

Because we have a finite set of samples, the ortho-
normality of egn (6) is interpreted only in terms of 8,
that is, it is required that

2 dlxddx) = &, (7)
{EYIES
Assuming a sct { ¢ } of orthonormal basis functions
can be found, the neural network becomes linear in its
parameters, such that eqn (1) can be writlen as

* Roundoff errors might require that the optimal solution be com-
puled twice or thrice, instead of only once, which would theoretically

suffice to find the w™,

&

NE(XY = Z w5,

Jul

1 =i=n. (8)

The optimal network parameters can be determined
by minimisation of the error functions

E= %

[x,y)ES

, I=i=n (9)

| Vi — 2 Wit x)
a=1

in parameters wy ;. When P > x, eqn (9) can be solved

by minimising all of its terms independent of each other.

Finite orthogonality can be acquired by use of a
three-term recursive generator (Stoer & Bulirsch,
1980); consult Forsythe (1957 ) for an elegant imple-
mentation. With this method, the orthogonal polyno-
mials are constructed incrementally (i.e., updated for
cach new sample), such that the system can accom-
modate new learning samples in Ox) time.

Practice shows that polynomials are rather st {(i.e.,
not flexible) for fitting data; especially when polyne-
mials of high order are used, the fitted curve tends to
oscillate. An alternative method is given by splines.
Here, the space between two measurements (x”, y™)
and (x"*", ¥**"}is focalfy interpolated by a single spline
{ polynomial ) by only looking at the values y* and y**!
and their derivatives or, in the case of cubie splines,
their second derivatives.

A different type of orthonormality can be obtained
with local representations. To represent each learning
sample, delta functions can be used:

| il z=x,
d{x) = ffz = x):= {10
0 otherwise.

In effect, a table lookup method is implemented.
Clearly, these functions adhere to orthonormality of
eqn (7)), and learning is a trivial task. The approxi-
mation is local, and smoothness has to be added sep-
arately using some interpolation technique. For neural
implementations of this and similar technigues see
Miller 111 (1989), and van der Smagt, Jansen, and
Groen (1992).

For functions F of more than one variable, con-
structing orthonormal interpolating basis functions or
finding splines becomes cumbersome and even prohib-
itive when the data samples are not arranged on a grid.
For problems of high dimensionality, orthonormal basis
functions are impractical in use.

3.2, Nonorthonormal Basis Funclions

We therefore revert to basis functions that are not or-
thonormal, and are quantitatively independent of the
available data samples. Again, eqn ( 1) is the represen-
tation of the neural approximator, and the error func-
tions that must be minimised are
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w-2Z “'h:‘i'u( o WyeXe Wy ey |)

i=1 k=1

+ |.|.'3_u,||| v I=i=n. (11)

Because no model of 7 is assumed. the basis functions
are chosen on basis of their flexibility and cost. A com-
mon choice is the sigmoid function o -) because of its
nice properties.

4. PARAMETER ESTIMATION

Having determined a set of basis functions &, ( ), an
optimal set of parameters w have 1o be found to min-
imise the summed squared error

Elw) = E l’.- !r[."r . Z “':u':;'_r( E Wyip Xy “-'l._.l.krl)

el iRy ES =1 k=]

i n,] (12)

This learning process can be depicted as a walk through
a very high-dimensional weight space (see Figure 2).
Even though an optimal weight vector ( point A ) ex-
ists for a given network structure, the limited learning
set will render a different optimal solution (point B)
within the set W™ of optimal solutions. Due 1o im-
perfect minimisation a suboptimal solution (point C)
is reached. Also note that, due to the possibility of per-
mutations in the weights and hidden units {Chen &
Hechi-Nielsen, 1989), the solutions for w™ are nol
unigue, but the weight space consists of 2 number of
identical cones, each containing a global optimum,.
Nerative minimisation methods are based on the
following principle: given are a function E{w) that is

FIGURE 2. Learning of a feedforward neural network as a tra-
jectory in weight space. Point A represents the best approxi-
mation w™ paint B a single realisation of the optimal selution
for a given learning set, and point C is the actual solution. The
subset of optimal solutions is given by the dashed line. [ From
Vysniauskas et al. (1992); reprinted with permission.]
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to be minimised, and an initial state w,. Now for each
iteration, find a minimisation direction v, and a srepsize
oy, and update w as

Wi = W + aguy. (13)

The task of minimisation is finding optimal values for
a; and w; when only local information of the function
is available. Repeated application of egn (13), each
time with an optimal v; and «;, will bring £ to a min-
imum. This minimum can be either local or global;
there is no guarantee whatsoever about what kind of
minimum is encountered. If the error landscape is
complicated, that is, has many local minima, a better
minimum may be sought by starting at another initial
point, or perturbing the system away from the just
found minimum in hope for a better one ( Press et al.,
1986; Aarts & Korst, 1989).

Line Minimisation. When the minimisation direction
is available, the problem is to decide how far to go along
this direction before a new direction is chosen. Usually,
cvaluations of the function and its derivatives are used
to locate some minimum, global or local, and stop there.
There are methods available { Bromberg & Chang,
1992) that locate the global minimum, but these meth-
ods require several tens to hundreds of function eval-
uations and are therefore too expensive. Also, it can be
argued that perfect line minimisation may lead to get-
ting stuck in local minima of the overall error landscape,

One often used method, presented by Press et al,
{ 1986), is modeled after Brent: given there are three
values X, < X, < X, such that the [unction at x,, is the
lowest (i.e., @ minimum is bracketed by x, and x,.).
The sign of the derivative at x;, indicates whether a min-
imum is located in [x,. x,] or in [x,, x.]. This section
is then linearly interpolated from its endpoints, and the
procedure is repeated. This method is used in the sim-
ulations presented below.

4.1. First-Order Methods

The learning error eqn ( 12) can be written as a Taylor
cxpansion around wg,

-I.:{“.:’ - !'.'{w }-I' z o W, ¥+ !» E I :
L] W dwﬂ.l - J Lda s &“I'l.r'a“’f’f’:’ .
oWy o (14)

In first-order methods, all but the first term of this Tay-
lor expansion are ignored. These methods, where the
local gradient alone determines the minimisation di-
rection u, are known as steepest descent or gradient
descent; in feedforward neural network training they
are known as error back propagation,
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Steepest descent works as follows. When the system
is in a state w,, the gradient g; = 3/ dw; is computed
and a minimisation step in the direction u, = —g; is
performed. In normal steepest descent minimisation,
a one-dimensional minimisation in the direction of u;
is performed such that a point w,,, is reached where
2, is perpendicular to u;. The learning rule then be-
Comes

Wi = W, b oagu,, (15}
where the search direction 1s chosen as
W) = “Bisi1- {I'ﬁ]

In standard back propagation, the line minimisation
is usually replaced by a fixed step size «. A reason for
this is cost: one function evaluation for a feedforward
network means forward propagation of all the learning
patterns. Therefore, performing a line minimisation,
which usually requires at least three to five function
evaluations, is costly and may not improve the algo-
rithm (see Section 5).

The back propagation search direction is usually
augmented with a momentum term (Rumelhart, Hin-
ton, & Williams, 1986):

Wiy ™= Bi+1 t ﬂl“r" {IT}

This extra term is generally interpreted as avoiding os-
cillations. It will be shown below that adding the mo-
mentum term is wise when the values o, and 8, are
well chosen,

The inefliciency of steepest descent is due to the fact
that the minimisation directions and stcp sizes are
poorly chosen: unless the first step is chosen such that
it leads directly to the minimum, steepest descent will
zig-zag with many small steps.

4.2. Second-Order Methods

When using not only the first but also the second term
from the Taylor expansion eqn ( 14), the erroregn (12)
can be writlen as

E(w) = E(w) = E{wy) = b™w + wTdw  (18)

where w is expressed relative to wg and

' E
b=-VE[,,. and I—‘llr'ﬂr.ﬂwl_ :
] Fhay

A, the matrix of second derivatives, is called the Hessian
of E at w,.

Minima are located where the gradient to eqn ( 18)
is 0, that is,

VE=Aw - b =0, (19)
The optimal w™" is then found to be
W = 4, (20)

3

Thus, knowledge of the Hessian and gradient of £ re-
duce the minimisation to matrix inversion, if £ — E is
small. However, among other problems { Battiti, 1992},
calculation of A 1s computationally prohibitive. We will

therefore have o revert to approximating methods,

4.2.1. Quasi-Newton Methods. The aim of quasi-New-
ton methods, such as the BFGS ( Broyden-Fletcher-
Goldfarb-Shanno) and DFP (Davidon-Fletcher—
Powell ) methods, 1s to iteratively compute matrices I,
such that

lim M, = A7, (21}

==
The term gueasi-Newton applies if
Hooge — )~

is satisfied (this is trivially true for H = A4~', because
g = Aw — b). The resulting H; can then be used to
find

Wi — W, [22]

W,

i = Hib {23)

until a minimum is reached. It is easily seen that the
DFP update formula for H,,
{“’ul - 'I] x {“'uql - wﬂ]

Ew.ul w:]r{gl” gf}

» “!'rfﬂm_‘ﬂ..” :{ ['Haig.lrl i E.u”
(Rier — &) Hi(gio — &)

Hiw = H +

(24)

satisfies eqn (22); it can be shown to converge to A ™!
(Polak, 1971). A variant, with a slightly diffcrent update
for f,,. is the BFGS update.

A disadvantage of these methods, which can be es-
pecially cumbersome for neural network training due
to the number of elements » in w is that storage of the
H, is quadratic in the number of weights of the network.

4.2.2, Conjugate Gradient Methods. An alternative
second-order minimisation technigue is conjugate gra-
dlient oprimisaiion ( Stoer & Bulirsch, 1980: Presset al.,
1986; Polak, 1971; Powell, 1977; van der Smagt &
Krise, 1991). The direction of minimisation is always
chosen such that the minimisation steps in all previous
directions are not spoiled. That is to say, when the di-
rection u; is chosen and a line minimisation is per-
formed in this direction, leading to a point w,, , then
the gradient g,,, at w;., must be perpendicular to g;,
Bi-1s -+, Bo. The initial minimisation direction may
be chosen randomly, but is usually set o —g.

When such directions u; can be found and the ap-
proximaton of £ by its second-order Tavlor expansion
is exact, the minimum will be located in » steps, where
v is the number of free parameters of the system.

Suppose the imitial direction of minmimisation, which
1s started at wy, 15 uy. A linge minimisation in the di-
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rection of u, results in a gradient at w, perpendicular
to uy. In general,

u/gia =0 {25)

Because we do not want to spoil this minimisation step
in subsequent minimisations, the gradients of subse-
quent points of minimisation must also be perpendic-
ular to u;:

u/ g =0. (26)
Therefore, with eqn (25) and eqn (26},
ul (g — g =0 (27)

MNow, g2 — g4 is the change in the gradient as we
move from w;,, 10 w;,2. With cqn (18), the gradient
of IX at w; can be found to be

g = Aw; — b. (28)
Therefore,
0=ul (g = ga) = ufA(Wiz = wi ) = uldu, o,
(29)
or
u/Au; = 0. (30)

When eqn ( 30) holds for two vectors u, and u,,, these
vectors are said to be conjugale.

After, through line minimisation along u;, a point
w15 reached, the next minimisation direction is con-
structed using

Wi = "Rist +ﬁr“|’- {:”}
Conjugacy of u; and u;,, is obtained when
T
g, = Bk (32)
Bi &

a very slow approximation

FIGURE 3. Slow decrease with conjugate gradient in nongua-
dratic systems. The hills on the left are very steep, resulting
in a large search vector u,. When the quadratic portion is entered
the new search direction is constructed from the previous di-
rection and the gradient, resulting in a spiraling minimisation

(van Summeren, 1990).

PP ovan der Smagr
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FIGURE 4. Definition of 4,.

It is casy 1o show, il we take

.
Bi B
;B — EX)
“ u/ Aw, (>3
and
Biv1 = B ‘YI"I“J'\- {_3"1':'

that w/Aw;,, = 0 (uw; and u; conjugate) and that
g/ g = 0 (g and g orthogonal). This method is
known as Fletcher-Reeves conjugaie gradieni.

It is immediately concluded that egns (31)-(33)
implement the error back propagation learning rules
eqn (15) and egn ( 17) with learning parameter o and
momentum 3 thus chosen that subsequent search di-
rections are conjugate. Therefore, conjugate gradient
is a special case of error back propagation with mo-
mentum term, such that second-order information is
used.

A closer look at eqn ( 33) shows that « is large when
det(4) is small, that is, there is a small second-order
component in the Taylor approximation of £. In this
case, where the function is almost lincar, the minimi-
sation direction follows the gradient. When the qua-
dratic component is more prominent, the minimisation
takes a more conservative approach.

Equations (33) and (34) both require the Hessian
A. This embarrassment, because A is not known, can
be solved by line minimisation; the « and g obtained
are the same, Thus, the need of the matrix A or its
inverse is eliminated.

4.2.3. Improvements of Conjugale Gradient. Although
only v iterations are needed for a quadratic system with

TABLE 1
Percentage of Runs That Lead to a Global Minimum

XOR sin(x)cos(2x) tanix)
BP 91.3 15* 0.0
sD 38.0 a0 0.0
FR 81.5 495 4.5
DFP 341 35.7 40.0
CG 821 100.0 854

A global minimum was considered reached whean the summed
squared arror was less than 0.025 per pattern.
* Indicates that adaptive leaming rates were used in this case,
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FIGURE 5. Probability density of the number of function eval-
uations required to reach a global minimum ( summed squared
error less than 0.025 per pattern) for XOR classification with
standard error back propagation.

» degrees of freedom, due to the fact that we are not
minimising quadratic systems, as well as a result of
round off errors, the v directions have to be followed
several times, with a restart of w,,, = —g,,,. Restarting
the minimisation method requires some thought, and
improvements have been suggested by Polak and Ri-
bi¢re { 1971 ) and Powell { 1977). The resulting cost of
the minimisation procedure is O(v), which is signifi-
cantly better than the linear convergence’ of steepest
descent.

The Value of 8;. Equation ( 31) can give erroncous re-
sults when the system is in a region where it is not
nearly guadratic. Consider the case in Figure 3. When
the search direction u; is very large, and a guadratic
portion near the minimum is entered where the gra-
dient is small, a spiraling minimisation will ensue. The
slow spiraling can be detected as follows. Al each new
minimisation step, the angle 6, between g, and o, (see
Figure 4) equals

gl
rlu,i---g_f-l-. (35)
oo i
Replacing § by § + | in Figure 4 results in
Al ll = tan &, 0g..l. (36)
[lu]| can be eliminated from eqns (35) and (36):
1anﬂ,‘,=~"~!-—y-g3-5!>tanﬂ,-l-§ﬂ~u. (37)
cosf; el el

MNow, if #; approaches =/2, the iteration may take a
small step such that (g, , — g/) 15 small and the ratio
g+l /g | approaches unity. Then, according to eqn
(37), 0,4, is also near /2 and the effect depicted in
Figure 3 is observed. If, however, the expression for 3,
in eqn (32) is replaced by

= (38)
LT L

f =

* A method is said 10 converge lincarly il the error £y, = cF
with ¢ < I, where E s the error still left over. Methods that converge
with a higher power, thal is. £,,, = o £ )™ with s = 1, are called
suiper-finear,

0.0125
0.0075

00025

FIGURE 6. Probability density of the number of function eval-
vations required to reach a global minimum { summed squared
error less than 0.025 per pattern) for XOR classification with
error back propagation and line minimisation |steepest de-

scent).

then

Bl -l — &l
8, 5 —————————— 39
lel® S

or

. ot e el
Hnﬂ“';c‘usﬂ, ledl
such that #,,, = &; and u;, , is turned towards the steepest
descent direction. Notice that this expression for §; re-
tains the conjugacy of w; and v,
Conjugate gradient minimisation with eqn (38) is
known as Polak-Ribiére conjugate gradient.

(40)

Powell's Restart Procedures. A second improvement
involves the restart. It appears that restarting with u,,,
= —g,,, 15 incfficient. Instead, a restarting method that
does not abandon the second derivative information is
needed. A proposed method is obtained by setting u;
using eqn ( 31) when a restart is made, and by extending
the definition of w; on normal iterations ( Beale, 1972).

Let w, be an arbitrary downhill restarting direction.
Supposing F is quadratic, we are looking for a direction
u;,; that is a linear combination of w, and the gradients
B Biige - oo By Such that ug, ugy, ... are mutually
conjugate. An expression that suffices these conditions
15

Uy = g+ By 4 Gy (41)

002 _g
0.015| -E.
0.01;

|
0005

| 00 400 600 | 00 1000
Heralion

FIGURE 7. Probability density of the number of function eval-
uations required to reach a global minimum ( summed squared
error less than 0.025 per pattern) for XOR classification with
quasi-Newton DFP.
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FIGURE 8. Probability density of the number of function eval-
uations required to reach a global minimum (summed squared
error less than 0.025 per pattern) for XOR classification with
Fletcher-Reeves conjugate gradient.

Again, B; is calculated to make w;,, conjugate to u,,
and the extra term provides conjugacy 1o uy:

_ g_ﬂ'_aiﬂm “ )
u/ (g —g)’

BB — )
UL{!-‘,“: - &) ’

A (42)
To prevent that the resulting direction leads uphill
instead of downhill, we require that u/ g, = 0 for i =
k. Furthermore, the orthogonality between g;_, and g
must be guaranteed afier restart o prevent that the
approximations go 1o a nonzero limit:

gl = 02]gl’. (43)

Thirdly, the new search direction must go suficiently
downhill:

~1.20gl* = w/g = —080g|*. (44)
Ifeqns (43) or (44) are not satisfied, we restart with §
= k — |. The mentioned constants are suggested by
Powell.
5. RESULTS

Where appropriate, the following methods are com-
pared:
BP: standard error back propagation with fxed
learning rates;

SD: error back propagation with line minimisation
instead of learning rates {i.e., steepest descent mini-
misation);
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FIGURE 9. Probability density of the number of funclion eval-
uations required to reach a global minimum { summed squared
error less than 0.025 per pattern) for XOR classification with
Polak-Ribitre conjugate gradien with Powell restarts.
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FIGURE 10. Learning samples from the function sin(x)cos{2x).

DFP: Davidon-Fleicher-Powell quasi-Newton mini-
misation;
FR: Fleticher-Reeves conjugate gradient minimisa-

Lion;

CG: conjugate gradient minimisation with Powell
restarts,

The number of necessary error function evaluations is

counted as the number of itcrations. With error back

propagation, this equals the number of search directions
traversed. For the other methods, due to line minimi-
sation every search direction is traversed multiple times,
and in each instance the function value as well as the
derivative is computed.

The methods are compared on the following three
problems:

1. classification of the four XOR patterns, to reach an
average squared error of less than 0,023 per pattern;

2. approximation of the function sin{x)cos(2.x) for 0
= x = 2m, from which 20 samples are uniformly
chosen. An average squared error less than 0,025
per pattern must be reached;

3. approximation of the function tan{x) (with one
discontinuity) for 0 = x = =, from which 20 samples
are uniformly chosen. An average squared error less
than 0.025 per pattern must be reached.

In all instances, 10,000 trials were run.

5.1. Classification the XOR Problem

It has been observed ( Fahlman, 1988 ) that the exclusive
or classification problem is not a representative problem
because it does not encourage but rather penalises when

b, dins,
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FIGURE 11. Probability density of the number of function eval-
uations required to reach a global minimum (summed squared

error less than 0.025 per pattern) for sin(x)cos(2x) approxi-
mation with Fletcher-Reeves conjugate gradient.
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FIGURE 12. Probability density of the number of function eval-
uations required to reach a global minimum | summed squared
arror less than 0.025 per pattern) for sin(x)cos(2x) approxi-
mation with quasi-Newton DFP.

the network tries to generalise the learning patterns.
However, it is a difficult classification problem, and
therefore we use it as a henchmark for the five min-
imisation methods.

For all learning methods, 10,000 trials were run with
a network with two hidden units in one layer. For those
runs that reached a global minimum, where a global
minimum is considered reached when the summed
squared error 18 less than 0.025 per pattern, the number
of iterations needed is counted. Table 1 shows how often
a global mimimum is reached.

First, standard error back propagation is tested with
a learning rate of 0.1 and a momentum of 0.9, In 91.3%
of the trials a global minimum is reached. Figure 5
shows the number of ierations needed to reach a
summed squared error of less than 0.025 per pattern;
the average is located at 332, When, cach step, a line
minimisation is performed, the system is much more
sensifive to local minima: only in 38.0% of all trials
was a global minimum reached. The number of steps
needed is shown in Figure 6. Motice, however, that each
minimisation now takes three to five line minimisa-
tions; the average number of minimisation steps is
therefore the average number of function evaluations
(3661.7) divided by the average number of line min-
imisation steps (three to five).

The quasi-Newton method reaches a global mini-
mum only in 34.1% of the cases, and the average num-
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FIGURE 13. Probability density of the number of function eval-
uations required to reach a global minimum ( summed squared
error less than 0.025 per pattern) for sin(x)cos(2x) approxi-
mation with Polak-Ribiére conjugate gradient with Powell re-
starts.

FIGURE 14. Learning samples from the function tan(x).

ber of learning iterations is 2141.1 (see Figure 7).
Fletcher-Reeves conjugate gradient reaches the mini-
mum in 81.5% of the cases, but needs, on the average,
523.0 iterations (see Figure 8). Finally, conjugate gra-
dient with Powell restarts is 82.1% successful, and only
needs 79.2 iterations ( Figure 9).

It is clear that, to locate the “region™ of the global
minimum, standard error back propagation is very
successful when, initially, line search tends to move
towards local minima, and precision in locating the
ling minimum has no positive influence.

5.2, Continuous Function Approximation

Secondly, the function sin{x)cos( 2.x) was trained with
20 learning samples over the period 0. . . 27 (see Figure
10). The used network had 10 hidden units in one
laver { Vyiniauskas et al., 1992),

Figures 11-13 show the number of function evalu-
ations needed to reach a summed squared error less
than 0,025 per pattern. Although DFFP is slightly better
than CG, the latter always reaches a global minimum,
whercas the former only reaches a minimum in 35%
of the cases.

Steepest descent is not very sensitive 1o local minima
here, but needs, on the average, 4- 10® iterations to reach
the minimum.

Error back propagation was, when fixed stepsizes
were used, never able 1o find the minimum; when the
system was approaching a global minimum, the slepsize
was not small enough to continue decreasing the error,
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FIGURE 15. Prabability density of the number of function eval-
uations required to reach a global minimum ( summed squared
error less than 0.025 per pattern ) for tan(x ) approximation with
Fletcher-Reeves conjugate gradient.
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such that overshoot resulted. To overcome this problem,
adaptive learning rates (Silva & Almeida, 1990) were
used. Still the algorithm gave poor results, ofien reach-
ing local minima and needing over two million function
evaluations.

5.3, Discontinuons Function Approximation

Finally, the function tan{.x) over 0. . . «, with one dis-
continuity, was tested with 20 learning samples equally
distributed over the inputs space (see Figure 14). A
network with five hidden units in one hidden layer was
used ( Vysniauskas et al., 1992). Steepest descent and
error back propagation never reached a global mini-
mum. The other methods (see Figures 15-17) could
solve the problem.

6. DISCUSSION

It has been shown that, although standard error back
propagation is less sensitive to get stuck in local minima,
second-order minimisation methods are far superior
with respect 1o learning time, especially in accurately
approximating smooth functions. Conjugate gradient
algorithms, which can be seen as error back propagation
with momentum, were shown to be a better choice for
feedforward network training. In particular, Polak-
Ribiére conjugate gradient optimisation with Powell
restarts shows promising results for training feedfor-
ward networks.

The problem of local minima is serious, and further
investigation to the nature of the problem is required.
Some authors suggest hybrid training algorithms { Gorse
& Shepherd, 1992): switch to conjugate gradient op-
timisation near minima, and use error back propagation
with fixed stepsize otherwise. This method, which is
also suggested by Maller {1990), is a technique from
numerical analysis known as levenberg-Marquardt
optimisation ( Press et al., 1986).
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FIGURE 18, Probability density of the number of function eval-
uations required to reach a global minimum (summed squared
error less than 0,025 per pattern ) for tan{ x) approximation with
guasi-Newton DFP.
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FIGURE 17. Probability density of the number of function eval-
uations required to reach a global minimum { summed squared
error less than 0.025 per pattern ) for tan( x ) approximation with
Polak-Ribiére conjugate gradient with Powell restaris.
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APPENDIX
Orthogonal vs., Nonorthogonal Basis Functions

When a set of one-dimensional data points (., b} is fitted with
polynomials, the most obvious choice of basis functions would be
[ x) = x'. The set of P data points then can be ftted by minimising
the error Munction, also known as chi-square merit function

L n 2
E=% If, -2 mr’.] (45)
g=0

2l

)

where 1 is the desired degree of ihe approximation. Minimum values
for cqn (45 are reached where its derivatives vanish, that is,

r " 1
0= 3 ¥p= = ﬂ'.r'ti'JJ":‘ k=0,....n (46)
=1 sl

Solving eqn (46) involves inversion of the mairix A with

" ]
dg= Z Xpxhp= PJ: x'x!= [47)

=l i+ j + |
The matrix A, written like this, is the principal minor of order # +
1 of the infinite Hilbert matrix

-
—
[}
L D
D

O

that is cxtremely difficult to invert for large n, because roundoll errors
will have a tremendous impact.

When orthogonal basis functions are used, however, all the cle-
ments of A except those on the dingonal disappear, and inversion
reduces 1o a simple scalar division.

NOMENCLATURE

F iR - 5" the function that will be approximated

EP= st s .., 5"} the set of learning samples with &7 = [x7,
Fix")

W the weights in the network. There is a total
of ¥ parameters. The optimal weight vector
is denoted by w

dyiH == N 1 =i=x thex basis lunclions
NTH™ - 57 the network that s used for approximating F



